Success-Based Inheritance in Cultural Evolution

Karim Baraghith Christian J. Feldbacher-Escamilla

Spring 2018

Project Information

Publication(s):

 Feldbacher-Escamilla, Christian J. and Baraghith, Karim (2020). "Cultural Inheritance in Generalized Darwinism". In: *Philosophy of Science* 87.2, pp. 237–261. DOI: 10.1086/707564.

Talk(s):

- Baraghith, Karim and Feldbacher-Escamilla, Christian J. (2018-01-31/2018-02-03).
 Success-Based Inheritance in Cultural Evolution. Conference. Presentation (contributed).
 The Generalized Theory of Evolution. University of Düsseldorf: DCLPS.
- Baraghith, Karim and Feldbacher-Escamilla, Christian J. (2017-04-20/2017-04-21).
 Success-Based Inheritance in Cultural Evolution. Conference. Presentation (contributed).
 Meeting of the Nordic Network for Philosophy of Science. University of Copenhagen: NNPS.

Workshop(s):

Baraghith, Karim, Feldbacher-Escamilla, Christian J., et al. (2018-01-31/2018-02-03). The Generalized Theory of Evolution. Conference. Organization. Facts: est. 70 participants; 6 invited: Daniel Dennett, Eva Jablonka, Ruth Mace, Alex Mesoudi, Thomas Reydon, Brian Skyrms. Conference report in the JGPS. Conference report in The Reasoner. Conference report in Kriterion - Journal of Philosophy. (Programme- and Local Organizing Committee). University of Düsseldorf. URL: http://dclps.phil.hhu.de/genevo/.

Project(s):

 DFG funded research unit New Frameworks of Rationality (SPP1516); subproject The Role of Meta-Induction in Human Reasoning.

Introduction

Cultural evolution is described via principles for:

Variation

$$E, m_{v \longrightarrow v'}$$

Selection

S

Reproduction

$$X^n \Rightarrow X^{n+1}$$

However, contrary to natural evolution in culture there seems to be blending of traits and by this one can distinguish only quasispecies.

In this talk we provide a model for such blending inheritance.

Contents

Quasispecies & Blending Inheritance

Two Models of Cultural Evolution

A Success-Based Model

Quasispecies & Blending Inheritance

Is Cultural Evolution really "Treelike"?

The Quasispecies-Problem (cf. Gould 1991; Schurz 2011):

(1) Biological: Tree of descent

A,B,C,D... species

(2) Cultural

 $B^*, C^*...$ intermediate ancestors

Blending Inheritance: Repsonsible for Quasispecies

Two definitions of blending inheritance within the framework of cultural evolution:

- Traits/information frequently "flow" from one (quasi)species (e.g type of reproduced convention) to another (Schurz 2011): macroperspective.
- 2 Reproduction not of one trait but the average of reproduced traits (Boyd and Richerson 1988; Mesoudi 2011) – similar to success-based/conditional imitation: micro-perspective.

Inheritance: Four Possibilities

(1) Discrete inheritance

(2) Macroblending (cultural diffusion)

(3) Microblending

(4) Multiblending

Blending Inheritance: Success-Based Fitness Enhancement

Macrolevel

Microlevel

a,b,c,d...traits

Example

- Let a, b and c represent political attitudes
- Let the generations be election cycles
- Let a signify an extreme left wing position and c an extreme right wing position, whereas b stands for an intermediate value
- Agent (politician within election campaign) normally passes on moderate b-attitudes
- Notices change in the political environment by observing behaviour of her opponents (e.g. due to past poll ratings)
- Decides to merge useful parts of another political attitude with her own
- Promising strategic decision: figuring out what parts exactly seem attractive (might grant success) in the present situation and adopt them into the set of her own public attitudes.
- Given that the agent expects that c is about to fail in total but still contains success promising parts, it is rational to apply them and pass them on to the next election cycle (blending inheritance).

Learning: An Overview

Two Models of Cultural Evolution

Two Models of Cultural Evolution

A Learning Model by (Boyd and Richerson 1988)

A Learning Model by (Boyd and Richerson 1988)

Given a fixed / and $\mu(E) = 0$ (unbiased error/mutation)

It holds for the equilibrium state \hat{X} : $\mu(\hat{X}) = s$

A Population Dynamical Model

The model consists of (cf. Schurz 2011):

- $v_1, \ldots, v_k \ldots$ possible variants/values of a system
- $Pr(X^n = v_i)$... probability of X^n taking value v_i
- Generations: $X^0, \ldots, X^n, X^{n+1}, \ldots$

$$Pr(X^{n+1} = v_i) = \frac{Pr(X^n = v_i) \cdot s_i(Pr(X^n = v_i)) - \sum_{i \neq o=1}^k Pr(X^n = v_i) \cdot m_{v_i \longrightarrow v_o}}{\sum_{j=1}^k Pr(X^n = v_j) \cdot s_j(Pr(X^n = v_j)) - \sum_{j \neq o=1}^k Pr(X^n = v_j) \cdot m_{v_j \longrightarrow v_o}}$$

Pros & Cons

Model of (Boyd and Richerson 1988):

- + allows for blending inheritance via social learning s, I
- idealisation of unbiased error E (mutation)
- learning I is independent of a variants' reproductive success

The population dynamical model (cf. Schurz 2011):

- + avoids these idealisations
- does not implement blending directly

In the following part we are going to try to combine both advantages within one model.

A Success-Based Model

Implementation of Success-Based Weighting

• We define a normalised (\in [0,1]) distance measure: between the frequency of a variant from the best fitted variant in a generation n: $d_i(n)$

- Then we define a measure for absolute success by averaging: $as_i(n)$
- Then a measure for relative success by cutting off worse variants: $rs_i(n)$
- Based on $rs_i(n)$ we define a weight for n+1 by normalising: $w_i(n)$
- Finally, based on $w_i(n)$ we define the social learning of variant v_i as:

$$v_l^{n+1} = \sum_{l \neq j=1}^k w_j(n) \cdot v_j$$

Result

Example of relative-successbased blending

If frequency of the best
fitted non-learning variant =
s

$$\lim_{n\longrightarrow\infty} \Pr(\hat{X}=v_i^n)=s$$

Summary

- We started with the problem of quasispecies (due to macroblending).
- Then we discussed four kinds of Blending Inheritance (BI) and focused on microblending.
- (Boyd and Richerson 1988)'s model of BI, $\mu(E) = 0$ and fixed I
- Population dynamical model with $m_{v_i \longrightarrow v_j}$, and Pr-dependent s, but no BI
- Our model: BI, $m_{v_i \longrightarrow v_i}$, and Pr-dependent s

References I

- Boyd, Robert and Richerson, Peter J. (1988). *Culture and the Evolutionary Process*. Chicago: The University of Chicago Press.
- Dennett, Daniel C. (1995). Darwin's Dangerous Idea. Evolution and the Meanings of Life. London: Penguin Books.
- Feldbacher-Escamilla, Christian J. and Baraghith, Karim (2020). "Cultural Inheritance in Generalized Darwinism". In: *Philosophy of Science* 87.2, pp. 237–261. DOI: 10.1086/707564.
- Gould, Stephen Jay (1991). Bully for Brontosaurus. Reflections in Natural History. London: W.W. Norton & Company.
- Mesoudi, Alex (2011). Cultural Evolution: How Darwinian Theory Can Explain Human Culture and Synthesize the Social Sciences. Chicago: University of Chicago Press.
- Reydon, Thomas A. C. and Scholz, Markus (2014). "Searching for Darwinism in Generalized Darwinism". In: *The British Journal for the Philosophy of Science* 66.3, pp. 561–589. DOI: 10.1093/bjps/axt049.
- Schurz, Gerhard (2008). "The Meta-Inductivist's Winning Strategy in the Prediction Game: A New Approach to Hume's Problem". In: *Philosophy of Science* 75.3, pp. 278–305. DOI: 10.1086/592550.
- (2009). "Meta-Induction and Social Epistemology: Computer Simulations of Prediction Games". In: Episteme 6.02, pp. 200–220. DOI: 10.3366/E1742360009000641.
- (2011). Evolution in Natur und Kultur. Eine Einführung in die verallgemeinerte Evolutionstheorie. Heidelberg: Spektrum Akademischer Verlag. DOI: 10.1007/978-3-8274-2666-6.